
The Numerical Solution of the Nonlinear Systems of Equation

Assume that an articulated structure consists of two rigid rods the lengths of which are denoted by a1
and a2. The two rods are connected to each other by a hinge so the rods can rotate freely round point
B. (See the figure below.) We have fixed the end point A to a horizontal platform by a hinge and a solid
to the end point C, which can freely slide on the horizontal platform. The vertical distance between the
two horizontal platforms are denoted by a3.

By knowing the a1, a2 and a3 distances and the Phi angle, the S distance can be determined easily,
which is the distance measured horizontally between the points A and C. In practice, it is the other way
round: the a1, a2 and a3 distances matching the Phi and S values related have to be determined.
We want the construction to be created to meet the following conditions:

1. ha , akkor [cm],
2. ha , akkor [cm],
3. ha , akkor [cm].

Plan the articulated structure by giving the a1, a2 and a3 distances that satisfies all the three positional
conditions.

Phi angle. For this, divide the horizontal S distance to s1+s2 sum. We can do the division by the E point
which is the perpendicular projection of the B apex.

> >

(3)(3)

> >

> >

(1)(1)

> >

(4)(4)

(2)(2)

> >

(5)(5)

Write the cosine of the Phi angle into the ABE right angle triangle. By rearranging, we get the s1=AE
leg because the Phi angle and the a1 hypotenuse are known.

Then apply the Pythagorean theorem in the BCD right angle triangle to get the s2 leg. In this formula,
the BD leg is given by the difference of the EB=a1sin(Phi) and a3 distances.

By the s=s1+s2 addition, we can get the equation we were looking for among the s, a1, a2, a3 and Phi
variables.

To make the square root sign disappear, rearrange the equation in a way that the expression containing
the root should stand alone on the right side of the equation, then square the equation.

> >

> >

> >

(8)(8)

> >

> >

> >

(7)(7)

(6)(6)

(10)(10)

> >

(9)(9)

Sort the equation to zero. We can do this by extracting the right side from the left side.

We have got the nonlinear equation among the s, Phi, a1, a2 and a3 variables. In fact, we want to
determine the a1, a2 and a3 unknowns in a way that we substitute the relating values of Phi and s
 	 ,

 ,
 ,

into the equation. We have received three nonlinear equations in this way. Call them e1, e2 and e3.

We have to find the solution of the [képlet] system of equation for the [képlet] unknowns.

second-order surface in the R3 3D plane. The implicitplot3d instruction of the plots package was
designed to display the points of the surfaces given as an implicit.

Warning, the name changecoords has been redefined

> >

(12)(12)

> >

(6)(6)

(11)(11)

> >

The three surfaces proceed close to each other like the petals of a rose. We can see that the surfaces
cross each other. But is there only one point in the plane that all the three surfaces cross? It is
impossible to decide based on the graph.

this case, it gives the approximate value of a root, if such a root exists.

It seems we have received the root we wanted. But how can we decide if there are more roots? Shall we
look for a procedure that operates based on another solution algorithm? We can quickly find the
answer. Since the equations are the second degree polynomials of the a1, a2 and a3 variables, we can
use the Homotopy procedure of the Rootfinding package for the solution of the system of equation.
This procedure was designed for the numerical determination of all the roots of the polynomial system
of equation. The procedure should be given the polynomials but the variables need not be listed because
it considers the symbols variables. The procedure looks for the solution in the whole complex plane.

> >

(12)(12)

> >

(6)(6)

The procedure returned three real roots. It is interesting that all the roots appear in a complex form
although their imaginary unit is 0. The difference between the two solutions is that the value of the a2
appearing in one of the roots is the minus one fold of the one located in the other root.
But the original task cannot have two negative a2 solutions because a2 denotes a distance. Notice that
the a2 variable is rooted in each of the e1, e2 and e3 equations. Thus if a triple [képlet] satisfies the
[képlet] system of equation then the [képlet] does so.
The positive root coincides with the roots found thus we can be sure that the approximation value of the
only positive root is [képlet].
Before introducing the Newton-Raphson interation algorithm and how the solution can be found with
this method, we are going to show another interesting way to find the intersection. If we fix one of the
variables in the three equations, e.g. the value of the a2, then only the a1 and a3 variables will be
unknown in the [képlet] equations. Thus based on the three implicit equations, we can plot three plane
curves with the 2D implicitplot procedure. After this, we change the value of the a2 and watch the
alternation in an animation window. If we are lucky, we can see the three curves crossing one point in
the case of an a1, a2 or a3 value. We have written an animation program for this.

nivok := NULL;

for k from 0 to 20 do

 nivo:=implicitplot(subs(a[2] = 3+1/8*k,[e[1],e[2],e[3]]),

 a[1]=3..18,a[3]=0..15,grid = ([40,40]));

 szoveg:=textplot([[10,12,"a2 ="],[12,12,evalf(3+1/8*k,3)]]);

 nivok:=nivok, display([nivo,szoveg])

od;

display([nivok],insequence=true,title=`A szintvonalak mozgasa`)

> >

(12)(12)

(6)(6)

We had already known the approach of the solution above when we did the animation thus we were
able to choose the right value domains of the variables. The animation perfectly illustrates that all three
contours cross one point in the graph belonging to a2=5 and this point is approximately the [képlet]
coordinate point.
We are deducing a calculation procedure that approximates in second order to find the location of the
root. This procedure is the generalisation of the Newton tangent method, known for the functions with
one variable, for the functions with more variables. We give the description only for three variables but
the formulas are similar in the case of an arbitrary n variable. Consider the

nonlinear system of equation. Create an F vector-vector function from the functions located on the left
side of the equations.

> >

(12)(12)

(6)(6)

, ahol .

Thus the syntax of the system of equation is F(x)=0 where the 0 on the right side is the 3D null vector.
The so-called Newton-Raphson iteration method is based on the Taylor polynomial approximation of
the equations. Its syntax is the following:

We did not write but only indicated the second or higher order elements of the approximation because
we would not use them. If the deltax, deltay and deltaz denote such values for which the

 ,

 és

equations are true, that is, we have found the location of the root, then all the left sides are zeros.
Furthermore, if we disregard the higher order elements on the right side then we get the following linear
system of equation for the deltax, deltay and deltaz variables.

The matrix of the system of equation is the Jacobian matrix

> >

(12)(12)

(6)(6)

 of the vector-vector function.

location. Solve the

linear system of equation for the unknown vector. With the vector received,

 root location. Then continue

the iteration with the writing and the solution of the new system of equation while using the new

values. The iteration should continue until the appropriate approximation of the root is not reached.
J(-1) denotes the inverse of the Jacobian matrix, that is,

 So the syntax of the iteration in short is

 , ahol adott.

> >

(12)(12)

(17)(17)

> >

> >

> >

> >

(14)(14)

(13)(13)

(15)(15)

(6)(6)

(16)(16)

(18)(18)

> >

> >

formula has to be applied. This is the formula of the well-known Newton tangent method.
For the convergence of the iteration, it is needed that the [képlet] matrix could be inverted in the
environment of the root location. It is fulfilled if [képlet].
After such a long theoretical preparation create the [képlet] functions from the left sides of the
polynomial equations received. Then create the F(X) vector-vector function from the functions.

With the help of the Jacobian procedure of the VectorCalculus package, we create the 3x3 Jacobian
matrix because it will be the matrix of the system of equation.

determinant of the Jacobian matrix.

(12)(12)

> >

(21)(21)

(22)(22)

> >

(20)(20)

> >

> >

(19)(19)

(6)(6)

> >

(18)(18)

It returned that neither the x nor the y variables can be zero and the variable z cannot be 2845684530.

the end of the iteration, start again from the first step eight times. In every step, we collect the values of
each approximation in the variable bolyong. At the end, we can examine the speed of the convergence.

Step 0: The set of the start value
Initialisation: the set of the x,y,z start values

Step 1: The calculation of the Jacobian matrix
The evaluation of the Jacobian matrix in the P(xk,yk,zk) points.

Step 2: The solution of the system of equation
Solve the [képlet] linear system of equation with the LinearSolve procedure of the LinearAlgebra
package.

Step 3: The modification of the start value
Modify the xk, yk and zk values according to the

formula.

(12)(12)

(25)(25)

> >

(22)(22)

(23)(23)

> >

> >

> >

> >

(6)(6)

> >

> >

(18)(18)

(24)(24)

> >

4. lépés: Feltétel vizsgálat
Calculate the sum of the absolute values of the function values at the

(xk,yk,zk) approximation location. We can recognise that we are near the root if the value of this sum is
almost zero. If [képlet], then we can finish the calculation procedure because we have found the root
with epsilon exactness. Otherwise, we execute another iteration step from step 1.

Vége az iterációnak!

If the sum received is larger than 10-6 then return to step 1 because we have not reached the appropriate
and exact approximation of the root.
The outputs above show the results after the 8th iteration step. We have got the 10-6 exact numerical
approximation of the root which we compare with the result received earlier by the homotopy
procedure.

As we can see, the exactness is in the given tolerance after the 8th iteration step.
Using the solution of the task, we have made an animation. We have written the matching values of the
Phi angle and the S distance in the graphs. Thus we can see if the given conditions are satisfied in case
the construction is made up from the solution received.

restart;

a1,a2,a3:= 5.838867375,5.182580039,.6830978044:

Ax:=t->a1*cos(t):Ay:=t->a1*sin(t):

Bx:=t->Ax(t)+sqrt(a2^2-(Ay(t)-a3)^2):By:=t->a3:

> >

> >

> >

(12)(12)

> >

> >

> >

> >

(22)(22)

> >

(6)(6)

> >

> >

> >

> >

> >

(18)(18)

> >

> >

> >

d:=0.1:

talaj1:=plot([[[5,a3-d],[11,a3-d]],seq([[5+k/2,a3-2*d],[5+k/2+2*

d,a3-d]],k=0..11)],

 color=black,thickness=2):

talaj2:=plot([[[-2,-d],[2,-d]],seq([[-2+k/2,-2*d],[-2+k/2+2*d,-d]

],k=0..7)],

 color=black,thickness=2):

 rajzok:=NULL:

 for k from 8 to 24 do

 t:=k*Pi/72:fok:=evalf(180*t/Pi,3);

 rudak:=plot(evalf([[0,0],[Ax(t),Ay(t)],[Bx(t),By(t)]]),

thickness=2):

 csuklok:=plots[pointplot]({[0,0],[Ax(t),Ay(t)],[Bx(t),By(t)]},

symbol=circle,symbolsize=18);

 szoveg1:=plots[textplot]([[1,0.1,`°`],[0.6,0.1,fok]]):

 szoveg2:=plots[textplot]([[3.5,0.3,`S = `],[4.5,0.3,evalf(Bx

(t),4)]]):

 test:=plottools[rectangle]([Bx(t)-4*d,By(t)-d], [Bx(t)+4*d,By

(t)+d], color=yellow):

 rajzok:=rajzok,plots[display]([csuklok,rudak,talaj1,talaj2,

szoveg1,szoveg2,test]):

 od:

 plots[display]([rajzok],insequence=true,axes=none);

> >

(12)(12)

(22)(22)

(6)(6)

> >

> >

> >

(18)(18)

With the run of the animation we can check if the construction satisfies the 3 conditions specified for
the matching (Phi,s) pair of values.

 ,
 ,
 ,

Mit tanultunk Maple-bl?

The implicitplot3d instruction plots the set of the (x,y,z) 3D points satisfying the F(x,
y,z,)=0 equation in a specific [képlet] rectangular domain. The points usually determine a coherent
surface. The procedure is in the plots package and its simplest call is:

We can find the numerical solution to the systems of equation with the fsolve
procedure. If we did not give a search range then it looks for the solution in the whole interpretation
domain of the equations and picks one out of those. In this case the call is the following:

> >

(12)(12)

(22)(22)

(6)(6)

> >

> >

(18)(18)

.

If there is no solution then the response is empty. If we limit the search range of the variables then it
looks for the solution only in this domain and if there is a solution it returns it. In this case the call is the
following:

The Homotopy procedure of the Rootfinding package determines the numerical
approximation of all the roots of the polynomial system of equation. The procedure has to be given
the polynomials but the variables need not be listed because it considers the symbols variables. The
procedure looks for the solution in the whole complex plane. Its call is:

The procedure gives the solution in a complex syntax, that is, in the list of lists.
With the help of the Jacobian procedure of the VectorCalculus package we can

determine the 3x3 Jacobian matrix

In the case of the vector-vector function the procedure returns the following

2x2 Jacobian matrix.

 .

 Coinciding with the dimensions, the call sequence of the procedure is

The Determinant procedure of the LinearAlgebra package calculates the determinant
of an nxn M matrix. The long syntax of the call is

> >

(12)(12)

(22)(22)

(6)(6)

> >

> >

(18)(18)

We can get the x solution of the A.x=b system of equation with the LinearSolve
procedure of the LinearAlgebra package. The procedure has to be given the A mxn coefficient
matrix and the b mxk matrix. In this case the procedure gives the nxk matrix of the x solution. Its
call sequence is:

Exercises

Solve the following nonlinear systems of equation and illustrate the
solution in 2 and 3D! Use the procedures and methods mentioned in

this worksheet.

(megoldás , , ,)

